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This work presents a study of crack propagation with a new 2D finite element method with
the stretching of the mesh. This method affects at each propagation step new coordinates of
each element node of the mesh. The structure is divided to areas and each area has its own
coordinate formulas. A program in FORTRAN allows us to create a parametric mesh, which
keeps the same number of nodes and elements during different steps of crack propagation.
The nodes are stretched using the criterion of maximum circumferential stress (MCS). The
fracture parameters such as stress intensity factors in modes I and II and the orientation
angles are calculated by solving the problem by the finite element code ABAQUS.
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1. Introduction

Today, crack propagation is a large and very complex problem in the study of life of a structure.
It is based on the principles of fracture mechanics, in particular, on calculation of the SIF in
various modes.

Many analytical formulas exist to determine the SIF. However, these expressions are often
developed for different cases of geometry and the solicitation is simple, see Tada and Irwin
(1985). Others authors developed numerical methods for modeling crack propagation (Chan et
al., 1970; Bouchard et al., 2003). They proposed a solution by the finite element method to
model crack propagation problems in 2D. In the recent years, various approaches have been
proposed such as the extended finite element method (XFEM), Möes et al. (1999), and methods
of generalized finite elements (GFEM), Babuska and Banerjee (2012). Both methods are based
on the partition of the unity method proposed by Babuska and Belenk (1997). In addition,
the use of mesh regeneration crack schemes improved the estimate of the increment criteria.
Bouchard et al. (2000) developed a crack propagation method using a linking technique that
optimized the size and quantity of the elements, but the geometry was quite remeshed in each
step.

The same method was used for several elastic and plastic examples. Bouchard et al. (2003),
Phongthanapanich and Dechaumphai (2004) developed a method that completely reconstructed
the mesh between refinement steps using the adaptive mesh and Delaunay triangulations.



870 M. Bentahar et al.

Meyer et al. (2006) proposed a crack propagation method that combined an adaptive iterative
solver, mesh refinement and mesh coarsening techniques as well as optimization of the number
of nodes.

In exchange, Askes et al. (2001) discussed linkage strategies based on the relocation of nodes
for r-adaptive and h/r-adaptive analysis of crack propagation.

Another approach is the boundary element method (Aliabadi, 1997; Portela et al., 1991; Yan
and Nguyen-Dang, 1995), Galerkin method (Belytschko et al., 1994), meshfree element methods
(Belytschko et al., 1994; Yan, 2006; Duflot and Nguyen-Dang, 2004) and the finite element
method (FEM) Singh et al. (2012).

Numerical methods have been widely used to calculate fracture parameters, including the
mechanics of linear elastic plastic-fracture (Bouchard et al., 2003), mechanical dynamics and
breaking (Réthoré et al., 2005), tiredness (Miranda et al., 2003) and the spread of quasi-static
crack (Khoei et al., 2008). Azocar et al. (2010) proposed a new method for the simulation of
crack propagation in solids (LEFM) (2D). They used the Lepp-Delaunay method based on the
refinement of the triangular mesh by an algorithm that allowed both generation of the first mesh
and local modification of the current mesh during propagation of the crack.

This method uses a technique of displacement extrapolation to calculate KI and KII , and
the maximum circumferential stress criterion to calculate the crack propagation angle. Alshoaibi
(2015) used the method of extrapolation of the movement to simulate crack propagation in 2D
by the finite element method of a linear elastic plate. He also characterized the singularity of the
crack tip, and the stress intensity factors around the crack tip. Zaleha et al. (2007) proposed to
assess the displacement extrapolation technique (DET) for predicting the stress intensity factor.

The DET is used when the singular element is present at the tip of the crack. It uses
differential movements to adjacent nodes through the crack to calculate the SIF. Cho (2015)
proposed mixed modes for stress intensity factors of a 2D inclined crack and evaluated them
by Petrov-Galerkin natural element method (PG-NE). Murat (2016) presented a comparative
study of the finite element method (FEM) and an analytical method for the problem of a plane
layered composite containing an internal perpendicular crack.

2. Law of fatigue crack propagation (Paris and Erdogan, 1963)

The simplest and the oldest law to model fatigue crack propagation in the two-dimensional case
is the law proposed by Paris and Erdogan (1963). It is based on constant amplitude tests for
which the propagation velocities appear as a linear function of the variation in the SIF in a
log-log diagram. It takes the form

dA

dN
= C(∆K)m (2.1)

where C and m are material properties, A is crack length, N is the number of loading cycles
and ∆K variation of the stress intensity factor. C and m are the material constants. The crack
propagation length is kept constant during propagation steps.

3. Crack propagation criteria

In order to simulate crack propagation under the linear elastic condition, the crack path direc-
tion must be determined. There are several methods used to predict the direction of the crack
trajectory such as the maximum normal stress theory (or the maximum circumferential stress
theory, Erdogan and Sih (1963)) and the minimum strain energy density theory (Sih, 1974).
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3.1. Maximum circumferential stress criterion (MCSC)

This criterion is used for elastic materials. It states that the crack propagates in the direction
for which the circumferential stress σθθ is maximum. It is a local approach since the direction
of crack growth is directly determined by the local stress field along a small circle of radius r
centered at the crack tip.

The kinking angle α of the propagating crack can be determined after calculating the values
of the stress intensity factors KI and KII .

α = 2arctan

[

1

4

KI
KII
± 1
4

√

( KI
KII

)2
+ 8

]

(3.1)

where KI and KII are, respectively, the stress intensity factors corresponding to mode I and
mode II loading.

4. Criterion of Richard 2D

KV =
KI
2
+
1

2

√

K2I + 5.366K
2
II = KIC (4.1)

where KV depends on the stress intensity factors KI and KII . It is noticeable that unstable
crack growth occurs if KV exceeds the fracture toughness KIC .

This criterion has an excellent approximation of the fracture limit surface of the maximum
tangential stress criterion (Erdogan and Sih, 1963). The crack kinking angle α can be determined
by

α = ∓
[

140◦
|KII |

|KI |+ |KII |
− 70◦

( |KII |
|KI |+ |KII |

)2]

(4.2)

whereby for KII > 0 the kinking angle α < 0 and vice versa while always KI > 0. There are
some more criteria, e.g. criterion of Nuismer (1975) or criterion of Amestoy et al. (1980), which
are based on the energy release rate and describes the crack growth for 2D-mixed-mode-loading
situations.

4.1. Field of the stresses in the vicinity of the forehead of the crack

Fig. 1. Field of stresses in the vicinity of the front of the crack
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The general equation of the stress field in 2D near the crack front defined by the stress
intensity factor K is given by Tada et al. (2000)

σI,IIi,j (r, θ) =
KI,II√
2πr
fij(θ) (4.3)

KI,II is the SIF in mode I and II, σ
I,II
i,j is the associated stress field with mode I.

KI is one that contributes the most to the propagation of the fatigue cracks. Fatigue cracks
tend to spread according to the perpendicular direction to the maximum tangential (Erdogan
and Sih, 1962)

σxx =
KI√
2πr
cos
θ

2

(

1− sin θ
2
sin
3θ

2

)

σyy =
KI√
2πr
cos
θ

2

(

1 + sin
θ

2
sin
3θ

2

)

τxy =
KI√
2πr
sin
θ

2
cos
θ

2
cos
3θ

2

(4.4)

Fig. 2. Stretching finite element method for 5 crack propagation

5. Illustration of 2D SFEM crack propagation

The finite element method by the stretching of the mesh (SFEM) generates for each propagation
new coordinates to each node through the following steps:

• Creation of singular elements and elements of contours of zone 5, see Fig. 3a by SFEM
using the crack propagation law respecting the propagation criterion.

• The elements of zone 1 and 2 are stretched and at each propagation. Column one of these
elements moves to the front of the mesh, the zones are divided in two parts, one is zone 1’
and the other is area 2’, Fig. 3b.

• . The elements of zones 4 and 6 are compressed in each crack propagation, see Fig. 3c.

Point 1 is the center the forehead of the crack and the starting basis for creation of other
nodes by this method. The coordinates of this point are given by the following relationship

X(1) = A Y (1) = 0 (5.1)

where A is the crack length.
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Fig. 3. Schematic illustration of SFEM method: (a) mesh without crack propagation, (b) mesh with
3 crack step propagation, (c) mesh with 5 crack propagations

Singular elements of the CPE4 type are used to determine zone 5. The following equation
defines the coordinates of the element nodes in this zone

xi = X(1) − j
L

t
cos((i− 1)θ) yi = Y (1) − j

L

t
sin(iθ) (5.2)

where j = 1, . . . , t is the number of contour, i = 1, . . . , 16 – number of elements, θ = π/16 –
angular division.

6. New coordinates of different areas for n propagations

Node 1 is the front of the crack; it is taken as the reference for all the other nodes of the mesh.
The coordinates of this node for n propagation are given by the following relationship

X(1) = A+
L

2

n
∑

p=1

(

cos
p
∑

k=1

αk

)

Y (1) =
L

2

n
∑

p=1

(

sin
p
∑

k=1

αk

)

(6.1)

where α is the crack orientation angle; p is the number of total crack propagation, p = 1, . . . , n;
L is length of the crack front.
From the first propagation, area 1 is divided into two areas: 1 and 1’, see Fig. 3b. The

coordinates in the second area can be given by the following formulas

xi =
1

M − p

{

X(1) −
[ n
∑
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(

cos
p
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αk

)

+ S
n
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(

sin
p
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αk

)]

L

2

}

(i− 1)

yj = −S
L

2
+
B − L2
N
(j − 1)

(6.2)

where

i = 1, . . . , 10 and M = 10 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p
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and for zone 1’, the node coordinates are
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(6.3)

where

i = 1, . . . , n and M = 4 p = 1, . . . , 5

j = 1, . . . , 9 and N = 9 k = 1, . . . , 5

and M is the number of vertical elements, N is the number of horizontal elements, B is height
of the structure, S is sign of the exchange factor between the two zones, the top and the bottom
(S = −1 for the top part area and S = 1 for the bottom part area).
The new coordinates of the elements of area 3, for n propagation can be written as
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(6.4)

where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p

The elements of area 4 are compressed as shown in Fig. 3b. The definition of coordinates of
this area may be given by the following relationship:
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where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p

and C is width of the structure.
Area 2 is an area which contains elements of singularity. During the steps of propagation,

zone 2 is divided into two zones 2 and 2’, see Fig. 3b. Equations (6.6) and (6.7) show the
coordinates of area nodes 2 and 2’, respectively
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where
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where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 4 and N = 4 k = 1, . . . , p

The coordinates of the node elements of area 6 can be written as
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where

i = 1, . . . , n and M = 4 p = 1, . . . , n

j = 1, . . . , N and N = 4 k = 1, . . . , p
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7. Interface FORTRAN ABAQUS

In structure of executing the FORTRAN program in interface with the ABAQUS (FEM) is
shown in Fig. 4.

Fig. 4. The structure of the interface between FORTRAN and
ABAQUS to calculate KI , KII and α

8. Numerical model (mesh)

The structure considered has length B = 8mm and width W = 7mm, the horizontal crack
length is A = 3.5mm, length of the front L = 1mm. The parametric mesh consists of 478 square
CPE4 type elements with four nodes.

The total number of degrees of freedom is equal to 1016. The FORTRAN program for
creation of the mesh that will be analyzed by the finite element code ABAQUS has been applied.
The steel structure with E = 1 · 107 Pa and ν = 0.25 is subjected to a uniform tensile stress
σ = 100MPa.

Fig. 5. The specimen with a crack
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9. Analytical calculation of stress intensity factors

The analytical stress intensity factor KI for this problem is given (Ewalds and Wanhill, 1989)
as

KI = Fσ
√
Aπ (9.1)

where F is the correction factor given by

F = 1.12− 0.23 A
W
+ 10.6

( A

W
)2 − 21.7

( A

W
)3 + 30.4

( A

W

)4
(9.2)

where the stress intensity factor KII is calculated by the relation

KI sin θ +KII
(

3 cos θ − 1) = 0 (9.3)

The analytical values of calculated stress intensity factors are compared with the numerical
results obtained by SFEM.

Table 1. Comparison of analytical results and SFEM for stress intensity factor KI and KII

α KANALI KSFEMI Error KANALII KSFEMII Error
[◦] [MPa

√
m] [MPa

√
m] [%] [MPa

√
m] [MPa

√
m] [%]

−14.76 31.58 33.03 −4.591 4.232 4.427 −4.608
−0.643 42.90 42.84 0.139 0.2408 0.2404 0.166

0.8313 56.95 55.90 1.844 −0.4132 −0.4056 1.839

1.577 75.68 76.65 −1.282 −1.041 −1.056 −1.441
2.049 114.51 113.9 0.532 −2.049 −2.038 0.54

10. Evaluation of the SIFs as functions of area 5

Zone 5 (singular area) is the most important area, see Fig. 3a. This zone consists of singular
elements and other constituent element contours. Its shape is a square of side L. This area can
be parametrically varied in order to optimize the mesh.
Figures 6a and 6b show the change in crack length A depending on the size L of the front of

singularity zone 5. The stress intensity factors KI and KII are compared with theoretical values
for each stage of propagation of the rift. The interval optimization of zone 5 is in an interval L
between 0.1 ¬ L ¬ 1.1. This comparison shows a good correlation between the analytical method
proposed by Ewalds and Wanhill (1989) and the method of stretching the (SFEM) mesh for the
value of L = 1.0mm. There is a very good correspondence between the results obtained in the
case of L = 1.0mm compared to other values of L.
The results given by the SFEM are close to those of the analytical solution. The results are

obtained for different tilt angles for different crack ratios A/W between 0.5 and 0.8. Figure 7a,
shows the evolutions between the SIF and the crack length A, and Fig. 7b depicts an increases
in this ratio for which the intensity factor KI increases and KII decreases.
Figure 8 illustrates the variation of the angle of inclination α estimated at each increment

of length of the crack. This comparison shows a good comparison between the two criteria, the
criterion of Richard and the MCS criterion we used in our study.
For different values of SIF for the two numerical models and the analytical one, Fig. 7b shows

similar values for KI and KII as functions of the crack length A. Similarly, see Fig. 7a for the
ratio A/W one can observe that there is an increase in length and crack orientation angle, which
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Fig. 6. Variation of SIF along crack length A for different values of L: (a) KI , (b) KII

Fig. 7. Comparison of SIF between SFEM and the analytical method: (a) function of the ratio A/W ,
(b) function of the crack length A

Fig. 8. Evolution of the inclination angle α during crack propagation, comparison between the MCSC
and Richard criterion

causes an increase in KI and a decrease in KII . These results were obtained by Boulenouar et
al. (2014), Ariffin (2008). The results obtained by the SFEM method and the analytical method
show a good correlation between them and allow one to conclude that the numerical model is
used correctly.

The values of the stress intensity factors KI and KII and the orientation angle α are well
estimated. Figure 9 illustrates the variation of the estimated angle for each contour of the crack
length. There is a very good correspondence between the results obtained by the two methods.
In this example, the angle α varies between −14.79◦ and 2.049◦.
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Fig. 9. Tilt angle α according to SIF (KI , KII) for the two methods: SFEM and analytical

11. Conclusion

The proposed method for the modeling of crack propagation, the stretching finite element me-
thod, allows one to get similar results to those obtained through analytical solution. This has
been checked for the case in which the analytical solution is well established. The stress intensity
factor is rated by the finite element method and its results are in good agreement with those
from the exact solution.

Compared (in the case where A/W = 0.5 to 0.8) with the analytical method, the results
of the present approach provide favorably comparable values and prove its effectiveness in the
modeling of problems with crack propagation. The two MCS criteria and the Richard criterion
used to determine the angle of crack orientation show a good correlation between them.
On the other hand the estimation of the error of the stress intensity factors for modes I

and II is less than 4.591 per cent. It is assessed as an acceptable threshold. The SFEM method
as another finite element method is a function of mesh density. It gives more precision if we
increase the number of contours around a singularity point. We have used an example with
5 contours in this study, but our parametric mesh allows us to increase the number of contours,
which can improve the results even more. The advantage of this method is keeping the same
mesh with the same number of nodes and elements while analyzing crack propagation. It is the
only finite element method without remeshing during crack propagation.
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